Three Dimensional Geometry Question 28

Question 28 - 31 January - Shift 2

If a point $P(\alpha, \beta, \gamma)$ satisfying $(\alpha ; \beta ; \gamma)\left(\begin{array}{ccc}2 & 10 & 8 \\ 9 & 3 & 8 \\ 8 & 4 & 8\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$ lies on the plane $2 x+4 y+3 z=5$, then $6 \alpha+9 \beta+7 \gamma$ is equal to :

(1) -1

(2) $\frac{11}{5}$

(3) $\frac{5}{4}$

(4) 11

Show Answer

Answer: (4)

Solution:

Formula: Equation Of A Plane

$2 \alpha+4 \beta+3 \gamma=5 \ldots \ldots (1)$

$2 \alpha+9 \beta+8 \gamma=0 \ldots \ldots (2)$

$10 \alpha+3 \beta+4 \gamma=0 \ldots \ldots (3)$

$8 \alpha+8 \beta+8 \gamma=0 \ldots \ldots (4)$

Subtract (4) from (2)

$-6 \alpha+\beta=0$

$\beta=6 \alpha$

From equation (4)

$8 \alpha+48 \alpha+8 \gamma=0$

$\gamma=-7 \alpha$

From equation (1)

$2 \alpha+24 \alpha-21 \alpha=5$

$5 \alpha=5$

$\alpha=1$

$\beta=+6, \quad \gamma=-7$

$\therefore 6 \alpha+9 \beta+7 \gamma$

$=6+54-49$

$=11$