Three Dimensional Geometry Question 19

Question 19 - 30 January - Shift 1

The line $L_1$ passes through the point $(2,6,2)$ and is perpendicular to the plane $2 x+y-2 z=10$. Then the shortest distance between the line $L_1$ and the line $\frac{x+1}{2}=\frac{y+4}{-3}=\frac{z}{2}$ is :

(1) 7

(2) $\frac{19}{3}$

(3) $\frac{19}{3}$

(4) 9

Show Answer

Answer: (4)

Solution:

Formula: Skew Lines

Line $L_1$, is given by

$L_1: \frac{x-2}{2}=\frac{y-6}{1}=\frac{z-2}{-2}$

Given,

$L_2: \frac{x+1}{2}=\frac{y+4}{-3}=\frac{z}{2}$

Shortest distance $=|\frac{\overrightarrow{{}AB} \cdot \overrightarrow{{}MN}}{MN}|$

$\overrightarrow{{}AB}=3 \hat{i}+10 \hat{j}+2 \hat{k}$

$\overrightarrow{{}MN}= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -2 \\ 2 & -3 & 2\end{vmatrix} =-4 \hat{i}-8 \hat{\mathbf{j}}-8 \hat{k}$

$MN=\sqrt{16+64+64}=12$

$\therefore \quad$ Shortest distance $=|\frac{-12-80-16}{12}|=9$

$\therefore \quad$ Option (4) is correct.