Statistics Question 9

Question 9 - 01 February - Shift 1

The mean and variance of 5 observations are 5 and 8 respectively. If 3 observations are $1,3,5$, then the sum of cubes of the remaining two observations is

(1) 1072

(2) 1792

(3) 1216

(4) 1456

Show Answer

Answer: (1)

Solution:

Formula: Arithmetic mean of individual series (ungrouped data), Variance of individual observations (ungrouped data)

$\begin{aligned} & \frac{1+3+5+a+b}{5}=5 \\ & a+b=16 \ldots \ldots(1) \\ & \sigma^2=\frac{\sum x_1^2}{5}-\left(\frac{\sum x}{5}\right)^2 \\ & 8=\frac{1^2+3^2+5^2+a^2+b^2}{5}-25 \\ & a^2+b^2=130 \ldots \ldots(2) \\ & \text { by }(1),(2) \\ & a=7, b=9 \\ & \text { or } a=9, b=7 \end{aligned} $

$\therefore$ The sum of cubes of the remaining two observations is 1072.