Statistics Question 6

Question 6 - 30 January - Shift 2

Let $S$ be the set of all values of $a_1$ for which the mean deviation about the mean of 100 consecutive positive integers $a_1, a_2, a_3, \ldots \ldots, a _{100}$ is 25 . Then $S$ is

(1) $\phi$

(2) ${99}$

(3) $\mathbb{N}$

(4) ${9}$

Show Answer

Answer: (3)

Solution:

Formula: Mean deviation about mean, Arithmetic mean of individual series (ungrouped data)

let $a_1$ be any natural number

$ \begin{aligned} & a_1, a_1+1, a_1+2, \ldots . ., a_1+99 \text{ are values of } a_i ’ S \\ & \bar{x}=\frac{a_1+(a_1+1)+(a_1+2)+\ldots . .+(a_1+99)}{100} \\ & =\frac{100 a_1+(1+2+\ldots .+99)}{100}=a_1+\frac{99 \times 100}{2 \times 100} \\ & =a_1+\frac{99}{2} \end{aligned} $

Mean deviation about mean $=\frac{\sum _{1=1}^{100}|x_i-\bar{x}|}{100}$

$=\frac{2(\frac{99}{2}+\frac{97}{2}+\frac{95}{2}+\ldots+\frac{1}{2})}{100}$

$=\frac{1+3+\ldots .+99}{100}$

$=\frac{\frac{50}{2}[1+99]}{100}$

$=25$

So, it is true for every natural no. ‘a1’.