Statistics Question 5

Question 5 - 30 January - Shift 1

The mean and variance of 7 observations are 8 and 16 respectively. If one observation 14 is omitted a and $b$ are respectively mean and variance of remaining 6 observation, then $a+3 b-5$ is equal to

Show Answer

Answer: (37)

Solution:

Formula: Arithmetic mean of individual series (ungrouped data), Variance of individual observations (ungrouped data)

$\frac{x_1+X_2+\ldots .+X_7}{7}=8$

$\frac{x_1+x_2+x_3 \ldots .+x_6+14}{7}=8$

$\Rightarrow x_1+x_2+\ldots .+x_6=42$

$\therefore \frac{x_1+x_2 \ldots .+x_6}{6}=\frac{42}{6}=7=a$

$\frac{\Sigma \mathbf{x} _i^{2}}{7}-8^{2}=16$

$\Sigma x i^{2}=560$

$\Rightarrow x_1^{2}+x_2^{2}+\ldots+x_6^{2}=364$

$b=\frac{x_1^{2}+x_2^{2}+\ldots .+x_6^{2}}{6}-7^{2}$

$=\frac{364}{6}-49$

$b=\frac{70}{6}$

$a+3 b-5=7+3 \times \frac{70}{6}-5$

$=37$