Inverse Trigonometric Functions Question 4

Question 4 - 31 January - Shift 1

If $\sin ^{-1} \frac{\alpha}{17}+\cos ^{-1} \frac{4}{5}-\tan ^{-1} \frac{77}{36}=0,0<\alpha<13$,

then $\sin ^{-1}(\sin \alpha)+\cos ^{-1}(\cos \alpha)$ is equal to

(1) $\pi$

(2) 16

(3) 0

(4) $16-5 \pi$

Show Answer

Answer: (1)

Solution:

Formula: Identity of subtraction of inverse tangent function and formula for sin inverse of sin of x.

$ \cos ^{-1} \frac{4}{5}=\tan ^{-1} \frac{3}{4} $

$\therefore \sin ^{-1} \frac{\alpha}{17}=\tan ^{-1} \frac{77}{36}-\tan ^{-1} \frac{3}{4}=\tan ^{-1}(\frac{\frac{77}{36}-\frac{3}{4}}{1+\frac{77}{36} \cdot \frac{3}{4}})$

$\sin ^{-1} \frac{\alpha}{17}=\tan ^{-1} \frac{8}{15}=\sin ^{-1} \frac{8}{17}$

$\Rightarrow \frac{\alpha}{17}=\frac{8}{17} \Rightarrow \alpha=8$

$\therefore \sin ^{-1}(\sin 8)+\cos ^{-1}(\cos 8)$

$=3 \pi-8+8-2 \pi$

$=\pi$