Functions Question 9

Question 9 - 29 January - Shift 1

The domain of $f(x)=\frac{\log _{(x+1)}(x-2)}{e^{2 \log _e x}-(2 x+3)}, x \in R$ is

(1) $\mathbb{R}-{1-3}$

(2) $(2, \infty)-{3}$

(3) $(-1, \infty)-{3}$

(4) $\mathbb{R}-{3}$

Show Answer

Answer: (2)

Solution:

Formula: Domain of function, Properties of logarithmic function, Properties of exponential function

$x-2>0 \Rightarrow x>2$

$x+1>0 \Rightarrow x>-1$

$x+1 \neq 1 \Rightarrow x \neq 0$ and $x>0$

Denominator

$x^{2}-2 x-3 \neq 0$

$(x-3)(x+1) \neq 0$

$x \neq-1,3$

So Ans $(2, \infty)-{3}$