Functions Question 17

Question 17 - 31 January - Shift 1

If the domain of the function $f(x)=\frac{[x]}{1+x^{2}}$, where [ $x]$ is greatest integer $\leq x$, is $(2,6)$, then its range is

(1) $(\frac{5}{26}, \frac{2}{5}]-{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}}$

(2) $(\frac{5}{26}, \frac{2}{5}]$

(3) $[\frac{5}{37}, \frac{2}{5}]-{\frac{9}{29}, \frac{27}{109}, \frac{18}{89}, \frac{9}{53}}$

(4) $(\frac{5}{37}, \frac{2}{5}]$

Show Answer

Answer: (4)

Solution:

Formula: Properties of Greatest Integer Function, Range of function

$f(x)=\frac{2}{1+x^{2}} \quad x \in[2,3)$

$f(x)=\frac{3}{1+x^{2}} \quad$ $x \in[3,4)$

$f(x)=\frac{4}{1+x^{2}} \quad x \in[4,5)$

$f(x)=\frac{5}{1+x^{2}} \quad x \in[5,6)$

$(\frac{5}{37}, \frac{2}{5}]$