Functions Question 15

Question 15 - 30 January - Shift 2

The range of the function $f(x)=\sqrt{3-x}+\sqrt{2+x}$ is

(1) $[\sqrt{5}, \sqrt{10}]$

(2) $[2 \sqrt{2}, \sqrt{11}]$

(3) $[\sqrt{5}, \sqrt{13}]$

(4) $[\sqrt{2}, \sqrt{7}]$

Show Answer

Answer: (1)

Solution:

Formula: Operations on functions, Range of function

$y^{2}=3-x+2+x+2 \sqrt{(3-x)(2+x)}$

$=5+2 \sqrt{6+x-x^{2}}$

$y^{2}=5+2 \sqrt{\frac{25}{4}-(x-\frac{1}{2})^{2}}$

$y _{\max }=\sqrt{5+5}=\sqrt{10}$

$y _{\min }=\sqrt{5}$