Differential Equations Question 5

Question 5 - 29 January - Shift 1

Let $y=f(x)$ be the solution of the differential equation $y(x+1) d x-x^{2} d y=0, y(1)=e$. Then $\lim _{x \to 0^{+}} f(x)$ is equal to

(1) 0

(2) $\frac{1}{e}$

(3) $e^{2}$

(4) $\frac{1}{e^{2}}$

Show Answer

Answer: (1)

Solution:

Formula: Variables separable

$ \frac{x+1}{x^{2}} d x=\frac{d y}{y} $

$\ln x-\frac{1}{x}=\ln y+c$

$(1, e)$

$c=-2$

$\ln x-\frac{1}{x}=\ln y-2$

$y=e^{{\ln x}-\frac{1}{x}+2}$

$\lim e^{{\ln x-1}-\frac{1}{x}+2 }; \text{as} ; ; {x \to} 0^{+}$

$=e^{-\infty}$

$=0$