Definite Integration Question 15

Question 15 - 30 January - Shift 2

So, it is true for every natural no. ‘$n$’

$\lim _{n \to \infty} \frac{3}{n}{4+(2+\frac{1}{n})^{2}+(2+\frac{2}{n})^{2}+\ldots+(3-\frac{1}{n})^{2}}$

is equal to

(1) 12

(2) $\frac{19}{3}$

(3) 0

(4) 19

Show Answer

Answer: (4)

Solution:

Formula: Definite integrals as a limit of sum, Standard formulas for Indefinite Integration

$L=\lim _{n \to \infty} \frac{3}{n} \sum _{r=0}^{n-1}(2+\frac{r}{n})^{2}$

$L=3 \int_0^{1}(2+x)^{2} dx=27-8=19$