Complex Number Question 1

Question 1 - 24 January - Shift 1

Let $p, q \in \mathbb{R}$ and $(1-\sqrt{3} i)^{200}=2^{199}(p+i q)$,

$i=\sqrt{-1}$ Then $p+q+q^{2}$ and $p-q+q^{2}$ are roots of the equation.

(1) $x^{2}+4 x-1=0$

(2) $x^{2}-4 x+1=0$

(3) $x^{2}+4 x+1=0$

(4) $x^{2}-4 x-1=0$

Show Answer

Answer: (2)

Solution:

Formula: Demoivre’s theorem

$(1-\sqrt{3} i)^{200}=2^{199}(p+i q)$

$2^{200}(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3})^{200}=2^{199}(p+i q)$

$2(-\frac{1}{2}-i \frac{\sqrt{3}}{2})=p+iq$

$p=-1, q=-\sqrt{3}$

$\alpha=p+q+q^{2}=2-\sqrt{3}$

$\beta=p-q+q^{2}=2+\sqrt{3}$

$\alpha+\beta=4$

$\alpha \beta=1$

equation is given by $x^2-(\alpha + \beta)x + \alpha \beta$

$\Rightarrow x^{2}-4 x+1=0$