Binomial Theorem Question 10

Question 10 - 29 January - Shift 1

Let the coefficients of three consecutive terms in the binomial expansion of $(1+2 x)^{n}$ be in the ratio $2: 5: 8$. Then the coefficient of the term, which is in the middle of these three terms, is_______

Show Answer

Answer: 1120

Solution:

Formula: General term of Bionomial Cofficient

$ t _{r+1}={ }^{n} C_r(2 x)^{r} $

$\Rightarrow \frac{{ }^{n} C _{r-1}(2)^{r-1}}{{ }^{n} C_r(2)^{r}}=\frac{2}{5}$

$\Rightarrow \frac{\frac{n !}{(r-1) !(n-r+1) !}}{\frac{n !(2)}{r !(n-r) !}}=\frac{2}{5}$

$\Rightarrow \frac{r}{n-r+1}=\frac{4}{5} \Rightarrow 5 r=4 n-4 r+4$

$\Rightarrow 9 r=4(n+1)\ldots (1) $

$\Rightarrow \frac{{ }^{n} C_r(2)^{r}}{{ }^{n} C _{r+1}(2)^{r+1}}=\frac{5}{8}$

$ \begin{aligned} & \Rightarrow \frac{\frac{n !}{r !(n-r) !}}{n !}=\frac{5}{4} \Rightarrow \frac{r+1}{n-r}=\frac{5}{4} \\ & \overline{(r+1) !(n-r-1) !} \\ & \Rightarrow 4 r+4=5 n-5 r \Rightarrow 5 n-4=9 r \ldots (2) \end{aligned} $

From (1) and (2)

$\Rightarrow 4 n+4=5 n-4 \Rightarrow n=8$

(1) $\Rightarrow r=4$

so, coefficient of middle term is