Ionic Equilibrium Question 9

Question 9 - 31 January - Shift 1

The logarithm of equilibrium constant for the reaction $Pd^{2+}+4 Cl^{-} \leftrightharpoons PdCl_4^{2-} \quad$ is_________

(Nearest integer)

Given: $\frac{2.303 RT}{F}=0.06 V$

$Pd _{(aq)}^{2+}+2 e^{-} \leftrightharpoons Pd(s) \quad E^{\circ}=0.83 V$

$PdCl_4^{2-}(aq)+2 e^{-} \leftrightharpoons Pd(s)+4 Cl^{-}(aq)$

Show Answer

Answer: (6)

Solution:

Formula: Relation between $\Delta G^{o}$ and $lnK _{eq}$

$E^{o}=0.65 V$

$\Delta G^{o}=-RT \ell nK$

$-nFE _{\text{cell }}^{o}=-RT \times 2.303(\log _{10} K)$

$\frac{E _{\text{Cell }}^{0}}{0.06} \times n=\log K$

$Pd^{+2}$ (aq.) $+\not 2 e^{-} \leftrightharpoons Pd(s), E _{\text{cat }, \text{ red }^{n}}^{o}=0.83$

$Pd(s)+4 Cl^{-}(aq. ) \leftrightharpoons PdCl_4^{2-},(aq)+2 e^{-}, E _{\text{Anode,Oxid}^{n}}^{O}=0.65$

Net Reaction ->

$ Pd^{2+} \text{ (aq.) }+4 Cl^{-} \text{(aq.) } \leftrightharpoons PdCl_4^{2-} \text{ (aq.) } $

$E _{\text{cell }}^{0}=E _{\text{cat }, \text{ red }^{n}}^{o}-E _{\text{Anode,Oxid}^{n}}$

$E _{\text{cell }}^{o}=0.83-0.65=0.18$

Also $n=2$

Using equation (1), (2) & (3)