Electrochemistry Question 8

Question 8 - 30 January - Shift 1

Consider the cell

$Pt _{(s)}|H_2(g, 1 atm)| H^{+}(aq, 1 M)||Fe^{3+}(aq), Fe^{2+}(aq) \mid Pt(s)$

When the potential of the cell is $0.712 V$ at $298 K$, the ratio $\lfloor Fe^{2+}\rfloor / \lfloor Fe^{3+}\rfloor$ is

(Nearest integer)

Given: $Fe^{3+}+e^{-}=Fe^{2+}, E^{0} Fe^{3+}, Fe^{2+} \mid Pt=0.771$

$\frac{2.303 RT}{F}=0.06 V$

Show Answer

Answer: (10)

Solution:

$Pt _{(s)} \mid H_2(g$, latm $) \mid H^{+}(aq, 1 M) | Fe^{3+}(aq), Fe^{2+}(aq) \mid Pt(s)$

at anode $H_2 \longrightarrow 2 H^{+}+2 e^{-}$

At cathode $Fe_aq^{3+}+e^{– \text{thon }} Fe_aq^{2+}$

$E^{\circ}=E _{H_2 \mid H^{+}}^{\circ}+E _{Fe^{3+} \mid Fe^{2+}}^{\circ}=0.771 V$

$E=E^{\circ}-\frac{0 \cdot 06}{1} \log \frac{Fe^{2+}}{Fe^{3+}}$

$0 \cdot 712=(0+0 \cdot 771)-\frac{0 \cdot 06}{1} \log \frac{Fe^{2+}}{Fe^{3+}}$

$\log \frac{Fe^{2+}}{Fe^{3+}}=\frac{0 \cdot 059}{0 \cdot 06} \approx 1$

$\frac{Fe^{2+}}{Fe^{3+}}=10$