JEE Main 12 Jan 2019 Morning Question 3

Question: The galvanometer deflection, when key $ K _1 $ is closed but $ K _2 $ is open, equals $ {\theta_0}, $ (see figure). On closing $ K _2 $ also and adjusting $ R _2 $ to $ 5\Omega , $ the deflection in galvanometer becomes $ \frac{{\theta_0}}{5}. $ The resistance of the galvanometer is, then, given by [Neglect the internal resistance of battery] [JEE Main Online Paper Held On 12-Jan-2019 Morning]

Options:

A) $ 25\Omega $

B) $ 22\Omega $

C) $ 5\Omega $

D) $ 12\Omega $

Show Answer

Answer:

Correct Answer: B

Solution:

Initially, let $ I _1 $ be the current through G. then $ I _1=\frac{V}{220+G}. $

After the key $ K _2 $ is closed, the circuit is shown as Apply KVL on loop 1,

$ 5I _3=GI _4\Rightarrow I _3=\frac{GI _4}{5} $ Also, $ I _3+I _4=I _2 $

$ \Rightarrow $ $ ( \frac{G}{5}+1 )I _4=I _2 $

$ \Rightarrow $ $ I _4=\frac{V}{( R _1+\frac{5G}{G+5} )( \frac{G+5}{5} )} $ For a galvanometer, $ I\propto \theta $ So, $ \frac{I _1}{I _4}=\frac{{\theta_0}}{{\theta_0}/5}\Rightarrow 5=\frac{V}{220+G}\frac{R _1(G+5)+5G}{5V} $

$ \Rightarrow $ $ 25(220+G)=(220)(G+5)+5G $

$ \Rightarrow $ $ 25(220)+20G=220G+1100 $

$ \Rightarrow $ $ 200G=4400\Rightarrow G=22\Omega $