JEE Main 12 Jan 2019 Morning Question 27

Question: A straight rod of length L extends from x=a to $ x=L+a. $ The gravitational force it exerts on a point mass m at x=0, if the mass per unit length of the rod is $ A+Bx^{2}, $ , is given by [JEE Main Online Paper Held On 12-Jan-2019 Morning]

Options:

A) $ Gm[ A( \frac{1}{a}-\frac{1}{a+L} )-BL ] $

B) $ Gm[ A( \frac{1}{a+L}-\frac{1}{a} )-BL ] $

C) $ Gm[ A( \frac{1}{a+L}-\frac{1}{a} )+BL ] $

D) $ Gm[ A( \frac{1}{a}-\frac{1}{a+L} )+BL ] $

Show Answer

Answer:

Correct Answer: D

Solution:

$ dF=\frac{Gm(\mu dx)}{x^{2}} $

$ F=Gm\int\limits _{x=a}^{x=(a+L)}{\frac{(A+Bx^{2})}{x^{2}}}dx $

$ F=Gm( A\int\limits _{x=a}^{x=a+L}{{x^{-2}}dx+}\int\limits _{x=a}^{x=a+L}{B}.dx ) $

$ F=Gm( A[ \frac{-1}{x} ]_a^{a+L}+B[x]_a^{a+L} ) $

$ F=Gm( -A[ \frac{1}{a+L}-\frac{1}{a} ]+B[a+L-a] ) $

$ F=Gm( A[ \frac{1}{a}-\frac{1}{a+L} ]+BL ) $