JEE Main 12 Jan 2019 Morning Question 2

Question: A particle of mass m moves in a circular orbit in a central potential field $ U(r)=\frac{1}{2}kr^{2}. $ If Bohr’s quantization conditions are applied, radii of possible orbitals and energy levels vary with quantum number n as [JEE Main Online Paper Held On 12-Jan-2019 Morning]

Options:

A) $ r _{n}\propto n^{2},E _{n}\propto \frac{1}{n^{2}} $

B) $ r _{n}\propto \sqrt{n},E _{n}\propto n $

C) $ r _{n}\propto \sqrt{n},E _{n}\propto \frac{1}{n} $

D) $ r _{n}\propto n,E _{n}\propto n $

Show Answer

Answer:

Correct Answer: B

Solution:

Force due to this field $ F=-\frac{\partial U}{\partial r} $ $ F=\frac{-\partial }{\partial r}( \frac{1}{2}kr^{2} )=-kr $

For circular orbit, $ \frac{mv^{2}}{r}=-kr\Rightarrow v\propto r $ …(i)

Also, by Bohr’s quantization condition

$ mvr=\frac{nh}{2\pi } $ -(ii)

For eqn. (i) and (ii),

$ r _{n}\propto {n^{1/2}} $ $ U(r)=\frac{1}{2}kr^{2}\Rightarrow E _{n}=-\frac{1}{2}U(r)=-\frac{1}{4}kr^{2} $

$ \Rightarrow E _{n}\propto n $