JEE Main 12 Jan 2019 Morning Question 30

Question: A tetrahedron has vertices $ P(1,2,1),Q(2,1,3), $ $ R(-1,1,2) $ and $ O(0,0,0). $ The angle between the faces OPQ and PQR is [JEE Main Online Paper Held On 12-Jan-2019 Morning]

Options:

A) $ {{\cos }^{-1}}( \frac{7}{31} ) $

B) $ {{\cos }^{-1}}( \frac{17}{31} ) $

C) $ {{\cos }^{-1}}( \frac{19}{35} ) $

D) $ {{\cos }^{-1}}( \frac{9}{35} ) $

Show Answer

Answer:

Correct Answer: C

Solution:

Here, $ \overrightarrow{{}OP}\times \overrightarrow{{}OQ}=(\hat{i}+2\hat{j}+\hat{k})\times (2\hat{i}+\hat{j}+3\hat{k}) $

$ =5\hat{i}-\hat{j}-3\hat{k} $ Again, $ \overrightarrow{{}PQ}\times \overrightarrow{{}PR}=(\hat{i}-\hat{j}+2\hat{k})\times (-2\hat{i}-\hat{j}+\hat{k}) $ $ =\hat{i}-5\hat{j}-3\hat{k} $

Let angle between faces OPQ and PQR is $ \theta $

$ \therefore $ $ \cos \theta =\frac{5+5+9}{{{(\sqrt{25+9+1})}^{2}}}=\frac{19}{35}. $