JEE Main 12 Jan 2019 Morning Question 27

Question: $ \underset{x\to \pi /4}{\mathop{\lim }},\frac{{{\cot }^{3}}x-\tan x}{\cos ( x+\frac{\pi }{4} )} $ is [JEE Main Online Paper Held On 12-Jan-2019 Morning]

Options:

A) $ 4\sqrt{2} $

B) $ 8\sqrt{2} $

C) 4

D) 8

Show Answer

Answer:

Correct Answer: D

Solution:

$ \underset{x\to \frac{\pi }{4}}{\mathop{\lim }},\frac{{{\cot }^{3}}x-\tan x}{\cos ( x+\frac{\pi }{4} )} $

$ =\underset{x\to \frac{\pi }{4}}{\mathop{\lim }},\frac{1-{{\tan }^{4}}x}{\cos ( x+\frac{\pi }{4} )}=2\underset{x\to \frac{\pi }{4}}{\mathop{\lim }},\frac{1-{{\tan }^{2}}x}{\cos ( x+\frac{\pi }{4} )} $

$ =2\underset{x\to \frac{\pi }{4}}{\mathop{\lim }},\frac{{{\cos }^{2}}x-{{\sin }^{2}}x}{\frac{1}{\sqrt{2}}(\cos ,x-\sin x)}.\frac{1}{{{\cos }^{2}}x} $ $ =4\sqrt{2},\underset{x\to \frac{\pi }{4}}{\mathop{\lim }},(\cos ,x+\sin x)=8 $