JEE Main 12 Jan 2019 Morning Question 15

Question: If $ x>1 $ for $ {{(2x)}^{2y}}=4{e^{2x-2y}}, $ then $ {{(1+log _{e}2x)}^{2}}\frac{dy}{dx} $ equals [JEE Main Online Paper Held On 12-Jan-2019 Morning]

Options:

A) $ \frac{x,{\log_e}2x-{\log_e}2}{x} $

B) $ {\log_e}2x $

C) $ \frac{x,{\log_e}2x+{\log_e}2}{x} $

D) $ x,{\log_e}2x $

Show Answer

Answer:

Correct Answer: A

Solution:

$ {{(2x)}^{2y}}=4{e^{2x-2y}} $

$ \Rightarrow $ $ 2y{\log_e}2x={\log_e}4+2x-2y $

$ \Rightarrow $ $ 2y{\log_e}2x=2{\log_e}2+2x-2y $

$ \Rightarrow $ $ y{\log_e}2x={\log_e}2+x-y\Rightarrow y=\frac{x+{\log_e}2}{1+{\log_e}2x} $

$ \therefore $ $ \frac{dy}{dx}=\frac{1+{\log_e}2x-(x+log _{e}2)\frac{1}{x}}{{{(1+log _{e}2x)}^{2}}} $

$ \Rightarrow $ $ \frac{dy}{dx}={{(1+log _{e}2x)}^{2}}=\frac{x{\log_e}2x-{\log_e}2}{x} $