JEE Main On 16 April 2018 Question 21

Question: A particle executes simple harmonic motion and is located at $ x=a,b $ and c at times $ t _0,2t _0 $ and $ 3t _0 $ respectively. The frequency of the oscillation is [JEE Main 16-4-2018]

Options:

A) $ \frac{1}{2\pi t _0}{{\cos }^{-1}}( \frac{a+b}{2c} ) $

B) $ \frac{1}{2\pi t _0}{{\cos }^{-1}}( \frac{a+b}{3c} ) $

C) $ \frac{1}{2\pi t _0}{{\cos }^{-1}}( \frac{2a+3c}{b} ) $

D) $ \frac{1}{2\pi t _0}{{\cos }^{-1}}( \frac{a+c}{2b} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ a=A\cos \omega t _{o} $ …………(1)

$ b=A\cos 2\omega t _{o} $ ………….(2)

$ c=A\cos 3\omega t _{o} $ ………….(3)

On adding (1) and (3) $ a+c=A(\cos \omega t _{o}+\cos 3\omega t _{o}) $

$ a+c=2A\cos (\frac{3\omega t _{o}+\omega t _{o}}{2})cos(\frac{3\omega t _{o}-\omega t _{o}}{2}) $

$ a+c=2A\cos 2\omega t _{o}\cos \omega t _{o} $ from (2), $ b=A\cos 2\omega t _{o} $

$ a+c=2b\cos \omega t _{o} $ $ {{\cos }^{-1}}(\frac{a+c}{2b})=2\pi ft _{o} $

$ f=\frac{1}{2\pi t _{o}}{{\cos }^{-1}}(\frac{a+c}{2b}) $