JEE Main On 16 April 2018 Question 28

Question: . If the length of the latus rectum of an ellipse is units and the distance between a focus and its nearest vertex on the major axis is $ \frac{3}{2} $ units, then its eccentricity is? [JEE Main 16-4-2018]

Options:

A) $ \frac{1}{2} $

B) $ \frac{2}{3} $

C) $ \frac{1}{9} $

D) $ \frac{1}{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

Focus $ =(ae,0) $ and vertex $ =(a,0) $ Distance between focus and vertex $ =a(1-e)=\frac{3}{2} $

$ \Rightarrow $ $ a-\frac{3}{2}=ae $ Squaring above equation, we get

$ \Rightarrow $ $ a^{2}+\frac{9}{4}-3a=a^{2}e^{2} $ …[1]

Length of latus rectum $ =\frac{2b^{2}}{a}=4 $

$ \Rightarrow $ $ b^{2}=2a $ $ e^{2}=1-\frac{b^{2}}{a^{2}} $ ….(from [2])

$ =1-\frac{2}{a} $ …[3}

Substituting this in equation [1] we get

$ \Rightarrow $ $ a^{2}+\frac{9}{4}-3a=a^{2}(1-\frac{2}{a}) $

$ \Rightarrow $ $ a=\frac{9}{4} $ Therefore, $ e^{2}=1-\frac{2}{a}=1-\frac{8}{9}=\frac{1}{9} $

$ \Rightarrow $ $ e=\frac{1}{3} $ Hence, answer is option D