JEE Main On 16 April 2018 Question 20

Question: Let M and m be respectively the absolute maximum and the absolute minimum values of the function, $ f(x)=2x^{3}-9x^{2}+12x+5 $ in the interval $ [0,3] $ . Then $ M-m $ is equal to. [JEE Main 16-4-2018]

Options:

A) 1

B) 5

C) 4

D) 9

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=2x^{3}-9x^{2}+12x+5 $ $ f’(x)=6x^{2}-18x+12=0 $

$ \Rightarrow $ $ x^{2}-3x+2=0 $ $ x=1 $ or $ x=2 $

$ f’’(x)=12x-18 $ $ f’’(1)=12(1)-18=-6<0 $

Hence, function has maxima at $ x=1 $

$ \Rightarrow $ $ M=f(1)=2-9+12+5=10 $ $ f’’(2)=12(2)-18=6>0 $

Hence, function has minima at $ x=2 $

$ \Rightarrow $ $ m=f(2)=2(8)-9(4)+12(2)+5=9 $

Therefore, $ M-m=10-9=1 $

Answer is option A.