JEE Main On 16 April 2018 Question 17

Question: The least positive integer n for which $ {{( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} )}^{n}}=1, $ is? [JEE Main 16-4-2018]

Options:

A) 2

B) 6

C) 5

D) 3

Show Answer

Answer:

Correct Answer: D

Solution:

First rationalize the number $ ( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} )\times ( \frac{1+i\sqrt{3}}{1+i\sqrt{3}} )=( \frac{-2+i2\sqrt{3}}{4} )=( \frac{1-i\sqrt{3}}{-2} ) $ …(1)

$ ( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} )\times ( \frac{1-i\sqrt{3}}{1-i\sqrt{3}} )=( \frac{4}{-2-i2\sqrt{3}} )=( \frac{-2}{1+i\sqrt{3}} ) $ …(2)

Using (1)and (2) $ {{( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} )}^{3}}=( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} )\times ( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} )\times ( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} ) $

$ =( \frac{1+i\sqrt{3}}{1-i\sqrt{3}} )\times ( \frac{-2}{1+i\sqrt{3}} )\times ( \frac{1-i\sqrt{3}}{-2} )=1 $

Therefore correct Answer is 3 so correct option is D