JEE Main On 16 April 2018 Question 1

Question: Let $ A= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ \end{bmatrix} $ and $ B=A^{20}. $ Then the sum of the elements of the first column of B is? [JEE Main 16-4-2018]

Options:

A) 211

B) 210

C) 231

D) 251

Show Answer

Answer:

Correct Answer: C

Solution:

Given, $ A= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ \end{bmatrix} . $ Computing higher powers of A,

$ A^{2}=A.A= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ \end{bmatrix} $ $ = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \\ \end{bmatrix} $

$ A^{3}=A^{2}.A= \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \\ \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ \end{bmatrix} $ $ = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 6 & 3 & 1 \\ \end{bmatrix} $

$ A^{4}=A^{3}.A= \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 6 & 3 & 1 \\ \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ \end{bmatrix} $ $ = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 10 & 4 & 1 \\ \end{bmatrix} . $

On observing the pattern, we come to a conclusion that,

$ A^{k}= \begin{bmatrix} 1 & 0 & 0 \\ k & 1 & 0 \\ \frac{k(k+1)}{2} & k & 1 \\ \end{bmatrix} . $

Therefore, sum of first column of $ A^{20} $ is $ (1+20+\frac{20\times 21}{2})=231. $

Option C is correct.