JEE Main On 08 April 2018 Question 21

Question: If $ \sum\limits _{i=1}^{9}{(x _{i}-5)=9} $ and $ \sum\limits _{i=1}^{9}{{{(x _{i}-5)}^{2}}=45}, $ then the standard deviation of the 9 items $ x _1,x _2,…..,x _9 $ is: [JEE Main Online 08-04-2018]

Options:

A) 2

B) 3

C) 9

D) 4

Show Answer

Answer:

Correct Answer: A

Solution:

Given $ \sum\limits _{i=1}^{9}{(x _{i}-5)=9} $ and $ \sum\limits _{i=1}^{9}{{{(x _{i}-5)}^{2}}=45} $

Variance $ {{\sigma }^{2}}=\frac{1}{x}\sum\limits _{{}}^{{}}{{{(x _{i}-5)}^{2}}-{{[ \frac{1}{x}\sum\limits _{{}}^{{}}{(x _{i}-5)} ]}^{2}}} $

$ =\frac{1}{9}\times 45-{{[ \frac{9}{9} ]}^{2}} $

$ n=9 $ $ {{\sigma }^{2}}=5-1=4 $ Standard Derivation $ =\sqrt{4}=2 $