JEE Main On 8 April 2017 Question 8

Question: If the um of the first n terms of the series $ \sqrt{3}+\sqrt{75}+\sqrt{243}+\sqrt{507}+…….. $ is $ 435\sqrt{3}, $ then n equals. [JEE Online 08-04-2017]

Options:

A) 13

B) 15

C) 29

D) 18

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ \sqrt{3}[1+\sqrt{25}+\sqrt{81}+\sqrt{69}+……]=435\sqrt{3} $

$ \sqrt{3}[1+5+9+13+…..T _{n}]=435\sqrt{3} $

$ =\sqrt{3}\times \frac{n}{2}[2+(n-1)4]=435\sqrt{3} $ $ 2n+4n^{2}-4n=870 $ $ =4n^{2}-2n-870=0 $

$ =2n^{2}-n-435=0 $

$ n=\frac{1\pm \sqrt{1+4\times 2\times 435}}{4} $

$ =\frac{1\pm 59}{4} $

$ =\frac{1+59}{4}=4;\frac{1-59}{4} $

$=-14.5$

n cannot be negative

so n=15