JEE Main On 8 April 2017 Question 13

Question: The curve satisfying the differential equation, $ ydx-(x+3y^{2})dy=9 $ and passing through the point (1,1), also passes through the point: [JEE Online 08-04-2017]

Options:

A) $ ( \frac{1}{4},-\frac{1}{2} ) $

B) $ ( -\frac{1}{3},\frac{1}{3} ) $

C) $ ( \frac{1}{4},\frac{1}{2} ) $

D) $ ( \frac{1}{3},-\frac{1}{3} ) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ ydx-xdy-3y^{2}dy=0 $

$ \frac{dx}{dy}=\frac{x}{y}+3y $

$ \frac{dx}{dy}-\frac{x}{y}=3y $

I.f. $ {e^{-\int _{{}}^{{}}{\frac{1}{y}dy}}}={e^{-\ln y}}=\frac{1}{y} $

$ \therefore $ solution is $ \frac{x}{y}=\int _{{}}^{{}}{3y.\frac{1}{y}dy} $

$ \frac{x}{y}=3y+c $ pass through (1,1)

$ \therefore $ $ 1=3+c;c=-2 $ $ x=3y^{2}-2y $

(i) $ ( \frac{1}{4},\frac{1}{2} )=\frac{1}{4}=\frac{3}{4}+1 $

(ii) $ -\frac{1}{3}=\frac{1}{3}-\frac{2}{3}=-\frac{1}{3} $