Wave Motion 3 Question 1

1. The pressure wave $p=0.01 \sin [1000 t-3 x] Nm^{-2}$, corresponds to the sound produced by a vibrating blade on a day when atmospheric temperature is $0^{\circ} C$. On some other day when temperature is $T$, the speed of sound produced by the same blade and at the same frequency is found to be $336 ms^{-1}$. Approximate value of $T$ is

(2019 Main, 9 April I)

(a) $15^{\circ} C$

(b) $11^{\circ} C$

(c) $12^{\circ} C$

(d) $4^{\circ} C$

Show Answer

Answer:

Correct Answer: 1. (d)

Solution:

  1. Given, $p=0.01 \sin (1000 t-3 x) N / m^{2}$

Comparing with the general equation of pressure wave of sound, i.e. $p _0 \sin (\omega t-k x)$,

we get

$$ \omega=1000 \text { and } k=3 $$

Also,

$$ k=\frac{\omega}{v} \Rightarrow v=\omega / k $$

$\therefore$ Velocity of sound is $\left|v _1\right|=\frac{1000}{3}$

$$ Or $$

Speed of sound wave can also be calculated as

$$ v=-\frac{(\text { coefficient of } t)}{(\operatorname{coefficient} \text { of } x)}=-\frac{1000}{(-3)}=\frac{1000}{3} m / s $$

Now, relation between velocity of sound and temperature is

$v=\sqrt{\frac{\gamma R T}{m}} \Rightarrow v \propto \sqrt{T}$

or $\quad \frac{v _2}{v _1}=\sqrt{\frac{T _2}{T _1}} \Rightarrow T _2=\frac{v _2^{2}}{v _1^{2}} \cdot T _1$

Here, $\quad v _2=336 m / s, v _1=1000 / 3 m / s$,

$$ T _1=0^{\circ} C=273 K $$

$\therefore \quad T _2=\frac{(336)^{2}}{(1000 / 3)^{2}} \times 273=277.38 K$

$\therefore T _2=4.38^{\circ} C \simeq 4^{\circ} C$



NCERT Chapter Video Solution

Dual Pane