Simple Harmonic Motion 5 Question 3

3. A simple pendulum of length $1 m$ is oscillating with an angular frequency $10 rad / s$. The support of the pendulum starts oscillating up and down with a small angular frequency of $1 rad / s$ and an amplitude of $10^{-2} m$. The relative change in the angular frequency of the pendulum is best given by

(a) $1 rad / s$

(b) $10^{-5} rad / s$

(c) $10^{-3} rad / s$

(d) $10^{-1} rad / s$

(2019 Main, 11 Jan II)

Show Answer

Answer:

Correct Answer: 3. (c)

Solution:

  1. We know that time period of a pendulum is given by

$$ T=2 \pi \sqrt{\frac{l}{g}} $$

So, angular frequency $\omega=\frac{2 \pi}{T}=\sqrt{\frac{g}{l}}$

Now, differentiate both side w.r.t $g$

$$ \begin{aligned} \therefore \quad \frac{d \boldsymbol{\omega}}{d g} & =\frac{1}{2 \sqrt{g} \sqrt{l}} \\ d \boldsymbol{\omega} & =\frac{d g}{2 \sqrt{g} \sqrt{l}} \end{aligned} $$

By dividing Eq. (ii) by Eq. (i), we get

$$ \frac{d \omega}{\omega}=\frac{d g}{2 g} $$

Or we can write

$$ \frac{\Delta \omega}{\omega}=\frac{\Delta g}{2 g} $$

As $\Delta g$ is due to oscillation of support.

$$ \therefore \quad \Delta g=2 \omega^{2} A $$

$\left(\omega _1 \rightarrow 1 rad / s\right.$, support)

Putting value of $\Delta g$ in Eq. (iii) we get

$$ \begin{aligned} & \frac{\Delta \omega}{\omega}=\frac{1}{2} \cdot \frac{2 \omega _1^{2} A}{g}=\frac{\omega _1^{2} A}{g} ;\left(A=10^{-2} m^{2}\right) \\ \Rightarrow \quad & \frac{\Delta \omega}{\omega}=\frac{1 \times 10^{-2}}{10}=10^{-3} rad / s \end{aligned} $$



NCERT Chapter Video Solution

Dual Pane