Simple Harmonic Motion 5 Question 2

2. A damped harmonic oscillator has a frequency of 5 oscillations per second. The amplitude drops to half its value for every 10 oscillations. The time it will take to drop to $\frac{1}{1000}$ of the original amplitude is close to

(2019 Main, 8 April II)

(a) $20 s$

(b) $50 s$

(c) $100 s$

(d) $10 s$

Show Answer

Answer:

Correct Answer: 2. (a)

Solution:

  1. Given, frequency of oscillations is $f=5 osc s^{-1}$

$\Rightarrow$ Time period of oscillations is $T=\frac{1}{f}=\frac{1}{5} S$

So, time for 10 oscillations is $=\frac{10}{5}=2 s$

Now, if $A _0=$ initial amplitude at $t=0$ and $\gamma=$ damping factor, then for damped oscillations, amplitude after $t$ second is given as

$$ A=A _0 e^{-\gamma t} $$

$\therefore$ After $2 s$,

$$ \begin{aligned} & \frac{A _0}{2}=A _0 e^{-\gamma(2)} \Rightarrow 2=e^{2 \gamma} \\ \Rightarrow \quad & \gamma=\frac{\log 2}{2} \end{aligned} $$

Now, when amplitude is $\frac{1}{1000}$ of initial amplitude, i.e.

$$ \begin{aligned} & \frac{A _0}{1000}=A _0 e^{-\gamma t} \\ & \Rightarrow \quad \log (1000)=\gamma t \\ & \Rightarrow \quad \log \left(10^{3}\right)=\gamma t \\ & 3 \log 10=\gamma t \\ & \Rightarrow \quad t=\frac{2 \times 3 \log 10}{\log 2} \\ & \Rightarrow \quad t=19.93 s \\ & \text { or } \quad t \approx 20 s \end{aligned} $$

[using Eq. (i)]



NCERT Chapter Video Solution

Dual Pane