Modern Physics 3 Question 3

3. In given time $t=0$, Activity of two radioactive substances $A$ and $B$ are equal. After time $t$, the ratio of their activities $\frac{R _B}{R _A}$ decreases according to $e^{-3 t}$. If the half life of $A$ is $\operatorname{In} 2$, the half-life of $B$ will be

(Main 2019, 9 Jan II)

(a) $4 \ln 2$

(b) $\frac{\ln 2}{4}$

(c) $\frac{\ln 2}{2}$

(d) $2 \ln 2$

Show Answer

Solution:

  1. Activity of radioactive material is given as

$$ R=\lambda N $$

where, $\lambda$ is the decay constant $N$ is the number of nuclei in the radioactive material.

For substance $A$,

$$ R _A=\lambda _A N _A=\lambda _A N _{0 A}\left(\text { initially } N _A=N _{0 A}\right) $$

For substance $B$,

$$ \left.R _B=\lambda _B N _B=\lambda _B N _{0 B} \text { (initially } N _B=N _{0 B}\right) $$

At $t=0$, activity is equal, therefore

$$ \lambda _A N _{0 A}=\lambda _B N _{0 B} $$

The half-life is given by

$$ T _{1 / 2}=\frac{0.693}{\lambda}=\frac{\ln 2}{\lambda} $$

So, for substance $A$,

$$ \begin{gathered} \left(T _{1 / 2}\right) _A=\frac{\ln 2}{\lambda _A} \Rightarrow \ln 2=\frac{\ln 2}{\lambda _A} \\ \lambda _A=1 \end{gathered} $$

According to the given question,

at time $t$,

$$ \frac{R _B}{R _A}=e^{-3 t} $$

Using Eqs. (i), (ii) and (iii)

$$ \begin{aligned} & \frac{R _B}{R _A}=e^{-3 t}=\frac{\lambda _B N _{0 B} e^{-\lambda _B t}}{\lambda _A N _{0 A} e^{-\lambda _A t}} \\ & \Rightarrow \quad e^{-3 t}=e^{\left(\lambda _A-\lambda _B\right) t} \\ & \Rightarrow \quad \begin{array}{ll} -3 & =\lambda _A-\lambda _B \\ \lambda _B & =\lambda _A+3 \end{array} \\ & \lambda _B=1+3=4 \end{aligned} $$

The half-life of substance $B$ is

$$ \left(T _{1 / 2}\right) _B=\frac{\ln 2}{\lambda _B}=\frac{\ln 2}{4} $$



NCERT Chapter Video Solution

Dual Pane