Modern Physics 2 Question 1

1. The stopping potential V0 (in volt) as a function of frequency (v) for a sodium emitter, is shown in the figure. The work function of sodium, from the data plotted in the figure, will be

(Take, Planck’s constant (h)=6.63×1034J-s, electron charge, e=1.6×1019C ]

(Main 2019, 12 April I)

(a) 1.82eV

(b) 1.66eV

(c) 1.95eV

(d) 2.12eV

Show Answer

Answer:

Correct Answer: 1. (b)

Solution:

  1. Given,

Planck’s constant,

h=6.63×1034Jse=1.6×1019C

and there is a graph between stopping potential and frequency.

We need to determine work function W.

Using Einstein’s relation of photoelectric effect,

(KE)max=eV0=hνhv0=hνW[W=hv0]V0=heνWe

or

From graph at V0=0 and v=4×1014Hz

0=6.63×1034e×4×1014WeWe=6.63×1034×4×1014eJ

 or W=6.63×4×1020J or W=6.63×4×10201.6×1019eV=1.657eVW=1.66eV

Alternate Solution

From graph, threshold frequency,

v0=4×1014Hz( where, V0=0)

Work function, W=hv0

W=6.63×1034×4×1014JW=6.63×4×10201.6×1019eV=1.657eV1.66eV



NCERT Chapter Video Solution

Dual Pane