Heat and Thermodynamics 6 Question 2

6. Consider an ideal gas confined in an isolated closed chamber. As the gas undergoes an adiabatic expansion, the average time of collision between molecules increases as $V^{q}$, where $V$ is the volume of the gas. The value of $q$ is $\left(\gamma=\frac{C _p}{C _V}\right)$

(a) $\frac{3 \gamma+5}{6}$

(b) $\frac{\gamma+1}{2}$

(c) $\frac{3 \gamma-5}{6}$

(d) $\frac{\gamma-1}{2}$

(2015 Main)

Show Answer

Answer:

Correct Answer: 6. (b)

Solution:

  1. Average time between two collisions is given by

$$ \tau=\frac{1}{\sqrt{2} \pi n v _{rms} d^{2}} \cdots(i) $$

Here, $n=$ number of molecules per unit volume $=\frac{N}{V}$

and $\quad v _{rms}=\sqrt{\frac{3 R T}{M}}$

Substituting these values in Eq.(i) we have,

$$ \tau \propto \frac{V}{\sqrt{T}} \cdots(ii) $$

For adiabatic process, $T V^{\gamma-1}=$ constant

substituting in Eq. (ii), we have $\tau \propto \frac{V}{\sqrt{\left(\frac{1}{V^{\gamma-1}}\right)}}$

$\text { or } \quad \tau \propto V^{1+\left(\frac{\gamma-1}{2}\right)} \quad \text { or } \tau \propto V^{\left(\frac{1+\gamma}{2}\right)}$



NCERT Chapter Video Solution

Dual Pane