Heat and Thermodynamics 5 Question 52

53. At $27^{\circ} C$ two moles of an ideal monoatomic gas occupy a volume $V$. The gas expands adiabatically to a volume $2 V$.

Calculate

(1996, 5M)

(a) the final temperature of the gas,

(b) change in its internal energy,

(c) the work done by the gas during this process.

Show Answer

Answer:

Correct Answer: 53. (a) $189 K$ (b) $-2767 J$ (c) $2767 J$

Solution:

  1. Given, $T _1=27^{\circ} C=300 K, V _1=V, V _2=2 V$

(a) Final temperature

In adiabatic process, $T V^{\gamma-1}=$ constant

$$ \therefore \quad T _1 V _1^{\gamma-1}=T _2 V _2^{\gamma-1} $$

or $\quad T _2=T _1\left(\frac{V _1}{V _2}\right)^{\gamma-1}=300\left(\frac{V}{2 V}\right)^{5 / 3-1}$

$$ \gamma=\frac{5}{3} \text { for a monoatomic gas } T _2 \approx 189 K $$

(b) Change in internal energy,

$$ \begin{aligned} \Delta U & =n C _V \Delta T \\ \Delta U & =(2)\left(\frac{3}{2} R\right)\left(T _2-T _1\right) \\ \Delta U & =2\left(\frac{3}{2}\right)(8.31)(189-300) J \\ \Delta U & =-2767 J \end{aligned} $$

(c) Work done

Process is adiabatic, therefore $\Delta Q=0$

and from first law of thermodynamics,

$$ \begin{aligned} \Delta Q & =\Delta W+\Delta U \\ \Delta W & =-\Delta U=-(-2767 J) \\ \Delta W & =2767 J \end{aligned} $$



NCERT Chapter Video Solution

Dual Pane