Gravitation 3 Question 2

5. The energy required to take a satellite to a height ’ $h$ ’ above earth surface (where, radius of earth $=6.4 \times 10^{3} km$ ) is $E _1$ and kinetic energy required for the satellite to be in a circular orbit at this height is $E _2$. The value of $h$ for which $E _1$ and $E _2$ are equal is

(2019 Main, 9 Jan II)

(a) $3.2 \times 10^{3} km$

(b) $1.28 \times 10^{4} km$

(c) $6.4 \times 10^{3} km$

(d) $1.6 \times 10^{3} km$

Show Answer

Answer:

Correct Answer: 5. (a)

Solution:

  1. The energy required for taking a satellite upto a height $h$ from earth’s surface is the difference between the energy at $h$ height and energy at surface, then

$\Rightarrow$

$$ E _1=U _f-U _i $$

$$ E _1=-\frac{G M _e m}{R _e+h}+\frac{G M _e m}{R _e} $$

(where, $U$ =potential energy)

$\therefore$ Orbital velocity of satellite,

$$ v _o=\sqrt{\frac{G M _e}{\left(R _e+h\right)}} \quad\left(\text { where, } M _e=\right.\text { mass of earth) } $$

So energy required to perform circular motion

$$ \begin{aligned} \Rightarrow \quad E _2 & =\frac{1}{2} m v _o^{2}=\frac{G M _e m}{2\left(R _e+h\right)} \\ E _2 & =\frac{G M _e m}{2\left(R _e+h\right)} \end{aligned} $$

According to the question,

$$ \begin{aligned} E _1 & =E _2 \\ \therefore \quad \frac{-G M _e m}{R _e+h}+\frac{G M _e m}{R _e} & =\frac{G M _e m}{2\left(R _e+h\right)} \\ \Rightarrow \quad 3 R _e & =2 R _e+2 h \\ h & =\frac{R _e}{2} \end{aligned} $$

As radius of earth, $R _e \approx 6.4 \times 10^{3} km$

Hence, $\quad h=\frac{6.4 \times 10^{3}}{2} km$ or $=3.2 \times 10^{3} km$



NCERT Chapter Video Solution

Dual Pane