Electromagnetic Induction and Alternating Current 4 Question 2

####2. A coil of self inductance $10 \mathrm{mH}$ and resistance $0.1 \Omega$ is connected through a switch to a battery of internal resistance $0.9 \Omega$. After the switch is closed, the time taken for the current to attain $80 %$ of the saturation value is [Take, $\ln 5=1.6$ ]

(Main 2019, 10 April II)

(a) $0.002 \mathrm{~s}$

(b) $0.324 \mathrm{~s}$

(c) $0.103 \mathrm{~s}$

(d) $0.016 \mathrm{~s}$

Show Answer

Answer:

Correct Answer: 2. (d)

Solution:

  1. Key Idea In an $L-R$ circuit, current during charging of inductor is given by

$$ i=i_{0}\left(1-e^{-\frac{R}{L} \cdot t}\right) $$

where, $i_{0}=$ saturation current.

In given circuit,

Inductance of circuit is

$$ L=10 \mathrm{mH}=10 \times 10^{-3} \mathrm{H} $$

Resistance of circuit is

$$ R=\left(R_{s}+r\right)=0.1+0.9=1 \Omega $$

$$ R_{S}=0.1 \Omega $$

Now, from

$$ \begin{array}{rlrl} & \text { Given, } & i & =i_{0}\left(1-e^{-\frac{R}{L} \cdot t}\right) \\ \Rightarrow & i & =80 % \text { of } i_{0} \\ & i & =\frac{80 i_{0}}{100}=0.8 i_{0} \end{array} $$

Substituting the value of $i$ in Eq. (i), we get

$$ \begin{aligned} & 0.8=1-e^{-\frac{R}{L} t} \Rightarrow e^{-\frac{R}{L} t}=0.2 \Rightarrow e^{\frac{R}{L} t}=5 \ & \Rightarrow \ln (e)^{\frac{R}{L} t}=\ln 5 \Rightarrow \frac{R}{L} t=\ln 5 \ & \Rightarrow \quad t=\frac{L}{R} \cdot \ln (5)=\frac{10 \times 10^{-3}}{1} \times \ln (5) \ &=10 \times 10^{-3} \times 1.6 \ &=1.6 \times 10^{-2} \mathrm{~s}=0.016 \mathrm{~s} \end{aligned} $$



NCERT Chapter Video Solution

Dual Pane