Vectors 5 Question 2

2. Let a=2i^+λ1j^+3k^,b=4i^+(3λ2)j^+6k^ and c=3i^+6j^+(λ31)k^ be three vectors such that b=2a and a is perpendicular to c. Then a possible value of (λ1,λ2,λ3) is

(2019 Main, 10 Jan I)

(a) (1,3,1)

(b) (1,5,1)

(c) (12,4,0)

(d) (12,4,2)

Show Answer

Answer:

Correct Answer: 2. (c)

Solution:

  1. We have, a=2i^+λ1j^+3k^;b=4i^+(3λ2)j^+6k^

and c=3i^+6j^+(λ31)k^,

such that b=2a

Now, b=2a

4i^+(3λ2)j^+6k^=2(2i^+λ1j^+3k^)

4i^+(3λ2)j^+6k^=4i^+2λ1j^+6k^

(32λ1λ2)j^=0

32λ1λ2=0

2λ1+λ2=3

Also, as a is perpendicular to c, therefore ac=0

(2i^+λ1j^+3k^)(3i^+6j^+(λ31)k^)=0

6+6λ1+3(λ31)=0

6λ1+3λ3+3=0

2λ1+λ3=1

Now, from Eq. (i), λ2=32λ1 and from Eq. (ii)

λ3=2λ11

(λ1,λ2,λ3)(λ1,32λ1,2λ11)

If λ1=12, then

λ2=4, and λ3=0

Thus, a possible value of (λ1,λ2,λ3)=(12,4,0)



NCERT Chapter Video Solution

Dual Pane