Vectors 4 Question 14

14. If the vectors b,c,d are not coplanar, then prove that the vector (a×b)×(c×d)+(a×c)×(d×b)

+(a×d)×(b×c) is parallel to a

(1994,4M)

Show Answer

Answer:

Correct Answer: 14. 5

Solution:

  1. Considering first part (a×b)×(c×d)

Let

c×d=e

(a×b)×e=(ae)b(be)a [(a×b)×c=(ac)b(bc)a]

=a(c×d)bb(c×d)d

=[acd]b[bcd]a

Similarly,

(a×c)×(d×b)=[adb]c[cdb]a=[adb]c[bcd]a

Also, (a×d)×(b×c)=(b×c)×(a×d)

=(b×c)×(d×a)=[bda]c[cda]b=[adb]c[acd]b

From Eqs. (i), (ii) and (iii),

(a×b)×(c×d)+(a×c)×(d×b)+(a×d)×(b×c)

=[acd]b[bcd]a+[adb]c[bcd]a[adb]c

[acd]b=2[bcd]a

Parallel to a.



NCERT Chapter Video Solution

Dual Pane