Vectors 3 Question 6

6. The value of $a$, so that the volume of parallelopiped formed by $\hat{\mathbf{i}}+a \hat{\mathbf{j}}+\hat{\mathbf{k}}, \hat{\mathbf{j}}+a \hat{\mathbf{k}}$ and $a \hat{\mathbf{i}}+\hat{\mathbf{k}}$ become minimum, is

(2003, 1M)

(a) -3

(b) 3

(c) $1 / \sqrt{3}$

(d) $\sqrt{3}$

Show Answer

Answer:

Correct Answer: 6. (c)

Solution:

  1. We know that, volume of parallelopiped whose edges are $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}=[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$.

$\therefore \quad[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=\left|\begin{array}{ccc}1 & a & 1 \ 0 & 1 & a \ a & 0 & 1\end{array}\right|=1+a^{3}-a$

Let $\quad f(a)=a^{3}-a+1$

$\Rightarrow \quad f^{\prime}(a)=3 a^{2}-1$

$\Rightarrow \quad f^{\prime \prime}(a)=6 a$

For maximum or minimum, put $f^{\prime}(a)=0$

$\Rightarrow a= \pm \frac{1}{\sqrt{3}}$, which shows $f(a)$ is minimum at $a=\frac{1}{\sqrt{3}}$ and maximum at $a=-\frac{1}{\sqrt{3}}$.



NCERT Chapter Video Solution

Dual Pane