Vectors 2 Question 4

4. Let α=3i^+j^ and β=2i^j^+3k^. If β=β1β2, where β1 is parallel to α and β2 is perpendicular to α, then β1×β2 is equal to

(a) 12(3i^9j^+5k^)

(b) 12(3i^+9j^+5k^)

(c) 3i^+9j^+5k^

(d) 3i^9j^5k^

Show Answer

Answer:

Correct Answer: 4. (c)

Solution:

  1. Given vectors α=3i^+j^ and β=2i^j^+3k^ and β=β1β2 such that β1 is parallel to α and β2 is perpendicular to α

 So, β1=λα=λ(3i^+j^) Now, β2=β1β=λ(3i^+j^)(2i^j^+3k^)=(3λ2)i^+(λ+1)j^3k^

β2 is perpendicular to α, so β2α=0

[since if non-zero vectors a and b are perpendicular to each other, then ab=0]

(3λ2)(3)+(λ+1)(1)=09λ6+λ+1=010λ=5λ=12

So, β1=32i^+12j^

and β2=(322)i^+(12+1)j^3k^=12i^+32j^3k^

β1×β2=|i^j^k^3212012323|=i^(320)j^(920)+k^(94+14)=32i^+92j^+52k^=12(3i^+9j^+5k^)



NCERT Chapter Video Solution

Dual Pane