Vectors 2 Question 23

23. If A,B,C,D are any four points in space, then prove that |AB×CD+BC×AD+CA×BD|

=4 (area of ABC).

(1987, 2M)

Show Answer

Solution:

  1. Let the position vectors of points A,B,C,D be a,b,c and d, respectively.

Then, AB=ba,BC=cb,AD=da,

BD=db,CA=ac,CD=dc

Now, |AB×CD+BC×AD+CA×BD|

=|(ba)×(dc)+(cb)×(da)+(ac)×(db)|=∣b×da×db×c+a×c+c×dc×ab×d+b×a+a×da×bc×d+c×b=2a×b+b×c+c×a)

Also, area of ABC

=12|AB×AC|=12|(ba)×(ca)|=12|b×cb×aa×c+a×a|=12|a×a+b×c+c×a|

From Eqs. (i) and (ii),

|AB×CD+BC×AD+CA×BD|2(2 area of ABC)

=4( area of ABC)



NCERT Chapter Video Solution

Dual Pane