Vectors 2 Question 13

13. Let a and b be two non-collinear unit vectors. If u=a(ab)b and v=a×b, then |v| is

(1999, 3M)

(a) |u|

(b) |u|+|ua|

(c) |u|+|ub|

(d) |u|+u(a+b)

Show Answer

Answer:

Correct Answer: 13. (c)

Solution:

  1. Let θ be the angle between a and b. Since, a and a are non-collinear vectors, then θ0 and θπ.

We have, ab=|a||a|cosθ

=cosθ[|a|=1,|b|=1, given ]

Now, u=a(ab)b|u|=|a(ab)b|

|u|2=|a(ab)b|2

|u|2=|acosθb|2

|u|2=|a|2+cos2θ|b|22cosθ(ab)

|u|2=1+cos2θ2cos2θ

|u|2=1cos2θ|u|2=sin2θ

Also, v=a×b

[given]

|v|2=|a×b|2|v|2=|a|2|b|2sin2θ

|v|2=sin2θ|u|2=|v|2

Now, ua=[a(ab)b]a=aa(ab)(ba)

=(a)2cos2θ=1cos2θ=sin2θ

|u|+|ua|=sinθ+sin2θ|v|ub=[a(ab)b]b=ab(ab)(bb)=abab|b|2=abab=0

|u|+|ub|=|u|+0=|u|=|v|

Also, u(a+b)=ua+ub=ua

|u|+u(a+b)=|u|+ua|v|



NCERT Chapter Video Solution

Dual Pane