Vectors 1 Question 9

10. Let two non-collinear unit vectors a^ and b^ form an acute angle. A point P moves, so that at any time t the position vector OP (where, O is the origin) is given by a^cost+b^sint. When P is farthest from origin O, let M be the length of OP and u^ be the unit vector along OP. Then,

(2008, 3M)

(a) u^=a^+b^|a^+b^| and M=(1+a^b^)1/2

(b) u^=a^b^|a^b^| and M=(1+a^b^)1/2

(c) u^=a^+b|a^+b^| and M=(1+2a^b^)1/2

(d) u^=a^b^|a^b^| and M=(1+2a^b^)1/2

Show Answer

Answer:

Correct Answer: 10. (a)

Solution:

  1. Given, OP=a^cost+b^sint

|OP|=(a^a^)cos2t+(b^b^)sin2t+2a^b^sintcost

|OP|=1+a^b^sin2t

|OP|max=M=1+a^b^ at sin2t=1t=π4

At t=π4,OP=12(a^+b^)

Unit vector along OP at (t=π4)=a^+b^|a^+b^|



NCERT Chapter Video Solution

Dual Pane