Vectors 1 Question 29

30. Let $O A C B$ be a parallelogram with $O$ at the origin and $O C$ a diagonal. Let $D$ be the mid-point of $O A$. Using vector methods prove that $B D$ and $C O$ intersect in the same ratio. Determine this ratio.

(1988, 3M)

Show Answer

Answer:

Correct Answer: 30. ($2:1$)

Solution:

  1. $O A C B$ is a parallelogram with $O$ as origin. Let

$ \overrightarrow{OA}=\overrightarrow{a}, \overrightarrow{OB}=\overrightarrow{b}, \overrightarrow{OC}=\overrightarrow{a}+\overrightarrow{b} $

$ \text { and } \quad \overrightarrow{OD}=\frac{\overrightarrow{\mathbf{a}}}{2} $

$\overrightarrow{\mathbf{C O}}$ and $\overrightarrow{\mathbf{B D}}$ meets at $P$.

$ \begin{array}{ll} \therefore & \overrightarrow{\mathbf{O P}}=\frac{\lambda \cdot 0+1(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})}{\lambda+1} \\ \Rightarrow & \overrightarrow{\mathbf{O P}}=\frac{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}}{\lambda+1} \\ \text { Again, } & \overrightarrow{\mathbf{O P}}=\frac{\mu\left(\overrightarrow{\mathbf{a}} \frac{2}{2}\right)+1(\overrightarrow{\mathbf{b}})}{\mu+1} \\ \Rightarrow & \overrightarrow{\mathbf{O P}}=\frac{\mu \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}}{2(\mu+1)} \end{array} $

[along $\overrightarrow{\mathbf{O C}}$ ]

[along $\overrightarrow{\mathbf{B D}}$ ] From Eqs. (i) and (ii),

$\frac{\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}}{\lambda+1}=\frac{\mu \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{a}}}{2(\mu+1)} \Rightarrow \frac{1}{\lambda+1}=\frac{\mu}{2(\mu+1)}$ and $\frac{1}{\lambda+1}=\frac{1}{\mu+1}$

On solving, we get $\mu=\lambda=2$

Thus, required ratio is $2: 1$.



NCERT Chapter Video Solution

Dual Pane