Trigonometrical Ratios and Identities 1 Question 29

29. The number of all possible values of θ, where 0<θ<π, for which the system of equations

(y+z)cos3θ=(xyz)sin3θxsin3θ=2cos3θy+2sin3θz

and (xyz)sin3θ=(y+2z)cos3θ+ysin3θ have a solution (x0,y0,z0) with y0z00, is ……

(2010)

Show Answer

Solution:

  1. Given equations can be written as

xsin3θcos3θycos3θz=0xsin3θ2cos3θy2sin3θz=0

and xsin3θ2ycos3θ1z(cos3θ+sin3θ)=0

Eqs. (ii) and (iii), implies

2sin3θ=cos3θ+sin3θsin3θ=cos3θtan3θ=13θ=π4,5π4,9π4 or θ=π12,5π12,9π12



NCERT Chapter Video Solution

Dual Pane