Trigonometrical Ratios and Identities 1 Question 25

25. Prove that

$\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha=\cot \alpha \quad(1988,2 M)$

Show Answer

Solution:

  1. We know that,

$$ \cot \theta-\tan \theta=\frac{1-\tan ^{2} \theta}{\tan \theta}=2 \frac{1-\tan ^{2} \theta}{2 \tan \theta}=2 \cot 2 \theta $$

$$ LHS=\tan \alpha+2 \tan 2 \alpha+4 \tan 4 \alpha+8 \cot 8 \alpha $$

$$ \begin{array}{r} =-(\cot \alpha-\tan \alpha-2 \tan 2 \alpha-4 \tan 4 \alpha) \\ +8 \cot 8 \alpha+\cot \alpha \\ =-(2 \cot 2 \alpha-2 \tan 2 \alpha-4 \tan 4 \alpha) \\ +8 \cot 8 \alpha+\cot \alpha \end{array} $$

[from Eq. (i)]

$=-(2(\cot 2 \alpha-\tan 2 \alpha)-4 \tan 4 \alpha)$ $+8 \cot 8 \alpha+\cot \alpha$

$=-(2(2 \cot 4 \alpha)-4 \tan 4 \alpha)+8 \cot 8 \alpha+\cot \alpha$

[from Eq. (i)]

$=-4(\cot 4 \alpha-\tan 4 \alpha)+8 \cot 8 \alpha+\cot \alpha$

$=-8 \cot 8 \alpha+8 \cot 8 \alpha+\cot \alpha$

[from Eq. (i)]

$$ =\cot \alpha=RHS $$



NCERT Chapter Video Solution

Dual Pane