Trigonometrical Ratios and Identities 1 Question 25

25. Prove that

tanα+2tan2α+4tan4α+8cot8α=cotα(1988,2M)

Show Answer

Solution:

  1. We know that,

cotθtanθ=1tan2θtanθ=21tan2θ2tanθ=2cot2θ

LHS=tanα+2tan2α+4tan4α+8cot8α

=(cotαtanα2tan2α4tan4α)+8cot8α+cotα=(2cot2α2tan2α4tan4α)+8cot8α+cotα

[from Eq. (i)]

=(2(cot2αtan2α)4tan4α) +8cot8α+cotα

=(2(2cot4α)4tan4α)+8cot8α+cotα

[from Eq. (i)]

=4(cot4αtan4α)+8cot8α+cotα

=8cot8α+8cot8α+cotα

[from Eq. (i)]

=cotα=RHS



NCERT Chapter Video Solution

Dual Pane