Trigonometrical Equations 3 Question 6

7. The equation $(\cos p-1) x^{2}+(\cos p) x+\sin p=0$ in the variable $x$, has real roots. Then, $p$ can take any value in the interval

(1990, 2M)

(a) $(0,2 \pi)$

(b) $(-\pi, 0)$

(c) $-\frac{\pi}{2}, \frac{\pi}{2}$

(d) $(0, \pi)$

Show Answer

Answer:

Correct Answer: 7. (d)

Solution:

  1. Since, the given quadratic equation

$ (\cos p-1) x^{2}+(\cos p) x+\sin p=0 $

has real roots.

$\therefore$ Discriminant, $\cos ^{2} p-4 \sin p(\cos p-1) \geq 0$

$\Rightarrow \quad(\cos p-2 \sin p)^{2}-4 \sin ^{2} p+4 \sin p \geq 0$

$\Rightarrow \quad(\cos p-2 \sin p)^{2}+4 \sin p(1-\sin p) \geq 0$

$\because \quad 4 \sin p(1-\sin p)>0$ for $0<p<\pi$

and $\quad(\cos p-2 \sin p)^{2} \geq 0$

Thus, $(\cos p-2 \sin p)^{2}+4 \sin p(1-\sin p) \geq 0$

for

$0<p<\pi$.

Hence, the equation has real roots for $0<p<\pi$.



NCERT Chapter Video Solution

Dual Pane