Trigonometrical Equations 3 Question 4

4. The number of values of x in the interval [0,5π] satisfying the equation 3sin2x7sinx+2=0 is

(1998, 2M)

(a) 0

(b) 5

(c) 6

(d) 10

Show Answer

Answer:

Correct Answer: 4. (c)

Solution:

  1. Given, 3sin2x7sinx+2=0

3sin2x6sinxsinx+2=0

3sinx(sinx2)1(sinx2)=0

(3sinx1)(sinx2)=0

sinx=13[sinx=2 is rejected ]

x=nπ+(1)nsin113,nI

For 0n5,x[0,5π]

There are six values of x[0,5π] which satisfy the equation 3sin2x7sinx+2=0.



NCERT Chapter Video Solution

Dual Pane